Label-free protein assay based on a nanomechanical cantilever array

نویسندگان

  • Y Arntz
  • J D Seelig
  • H P Lang
  • J Zhang
  • P Hunziker
  • Ch Gerber
چکیده

We demonstrate continuous label-free detection of two cardiac biomarker proteins (creatin kinase and myoglobin) using an array of microfabricated cantilevers functionalized with covalently anchored anti-creatin kinase and anti-myoglobin antibodies. This method allows biomarker proteins to be detected via measurement of surface stress generated by antigen–antibody molecular recognition. Reference cantilevers are used to eliminate thermal drifts, undesired chemical reactions and turbulences from injections of liquids by calculating differential deflection signals with respect to sensor cantilevers. The sensitivity achieved for myoglobin detection is below 20 μg ml−1. Both myoglobin and creatin kinase could be detected independently using cantilevers functionalized with the corresponding antibodies, in unspecific protein background. This approach permits the use of up to seven different antigen–antibody reactions simultaneously, including an additional thermomechanical and chemical in situ reference. Applications lie in the field of early and rapid diagnosis of acute myocardial infarction.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple label-free biodetection and quantitative DNA-binding assays on a nanomechanical cantilever array.

We report a microarray of cantilevers to detect multiple unlabeled biomolecules simultaneously at nanomolar concentrations within minutes. Ligand-receptor binding interactions such as DNA hybridization or protein recognition occurring on microfabricated silicon cantilevers generate nanomechanical bending, which is detected optically in situ. Differential measurements including reference cantile...

متن کامل

Bioassays Based on Molecular Nanomechanics

Recent experiments have shown that when specific biomolecular interactions are confined to one surface of a microcantilever beam, changes in intermolecular nanomechanical forces provide sufficient differential torque to bend the cantilever beam. This has been used to detect single base pair mismatches during DNA hybridization, as well as prostate specific antigen (PSA) at concentrations and con...

متن کامل

Instrument for Label-Free Detection of Noncoding RNAs

We set up a label-free direct binding assay for the detection of noncoding RNAs. The assay is based on nanomechanical cantilever arrays for the detection of surface stress induced by immobilized biomolecules and their interaction partners. We used various means to significantly reduce the drift of the cantilever readout that was a prominent feature in experiments with readout in stationary flui...

متن کامل

Development of a peptide inhibitor-based cantilever sensor assay for cyclic adenosine monophosphate-dependent protein kinase.

A highly sensitive nanomechanical cantilever sensor assay based on an electrical measurement has been developed for detecting activated cyclic adenosine monophosphate (cyclic AMP)-dependent protein kinase (PKA). Employing a peptide derived from the heat-stable protein kinase inhibitor (PKI), a magnetic bead system was first selected as a vehicle to immobilize the PKI-(5-24) peptide for capturin...

متن کامل

Nanomechanical resonance spectroscopy: a novel route to ultrasensitive label-free detection.

We propose a new chemical detection technique in which an analyte's vibrational frequencies are interrogated directly using an array of nanomechanical resonators. This "nanomechanical resonance spectroscopy" (NRS) could permit label-free chemical detection, combining the high sensitivity of nanomechanical approaches with the high selectivity of traditional spectroscopy. A computational proof of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002